THE “ESSENTIAL” PHOSPHOLIPIDS
AS
A MEMBRANE THERAPEUTIC

Edited by
K. J. Gundermann, PhD, MD
Associate Professor

Publisher:
Polish Section of European Society of Biochemical Pharmacology
Institute of Pharmacology and Toxicology,
Medical Academy, Szczecin

SZCZECIN, 1993
CONTENTS

PREFACE

1. Phospholipids in the Human Membrane
 1.1 Phospholipids Composition
 1.2 Phospholipids for Structuring and Composition of Membranes
 1.3 Protein Distribution in Membranes
 1.4 Function of Phospholipids in Membrane Bilayer
 1.4.1 Membrane Fluidity
 1.4.2 Membrane Passage
 1.4.3 Activity of Membrane Bound Proteins and Receptors
 1.4.4 Cell Differentiation and Proliferation
 1.5 Functions of Phospholipids in Monolayers
 1.5.1 Phospholipids in Lipoproteins
 1.5.2 Biliary Micelles
 1.5.3 Emulsification
 1.6 Pool Function of Phospholipids in Membrane
 1.6.1 Eicosanoid Precursor
 1.6.2 Choline Donator
 1.7 Blood Corpuscles
 1.8 Surfacant

2. THE “ESSENTIALE” PHOSPHOLIPIDS (EPL)
 2.1 Chemistry
 2.2 Nomenclature
 2.3 EPL-Containing Preparations
 2.4 Pharmacokinetics
 2.4.1 Absorption in Animal Experiments
 2.4.2 Distribution in Animal Experiments
 2.4.3 Pharmacokinetics in Man
 2.5 Toxicology
 2.5.1 Acute Toxicology
 2.5.2 Toxicity in Repeated Administrations
 2.5.3 Teratogenicity and Embryotoxicity of EPL
 2.5.4 Perinatal and Postnatal Toxicity, Fertility and Reproductive Performance
 2.5.5 Mutagenic and Carcinogenic Potential
 2.6 Safety Pharmacology and Pharmacodynamic Effects of EPL
3. MODE OF ACTION OF EPL

3.1 EPL as Structural Elements for Formation and Regeneration of Biological Membrane
3.2 Membrane Fluidity and EPL
3.3 EPL and the Activity of Membrane-Bound Enzyme Systems
 3.3.1 EPL and Detoxifying Enzymes
 3.3.2 EPL and Enzymes of the Lipid Metabolism
3.4 Effects of EPL on Lipoproteins
3.5 Effects of EPL on Hemorrheology
3.6 EPL for Drug Transport and HDL Simulation
3.7 EPL, Carrier of Polyunsaturated Fatty Acids and of Choline
3.8 Influence of EPL on Lipid Peroxidation
3.9 EPL as Fat Solubilizer

4. PHARMACOLOGICAL INVESTIGATIONS WITH EPL IN DIFFERENT DISEASE MODELS

4.1 Effect in Liver and Kidneys
 4.1.1 Toxic Liver Damage
 4.1.2 Immunological Hepatocyte Damage
 4.1.3 Irradiation
 4.1.4 Stimulation of Regeneration
 4.1.5 Renal Disorders
4.2 Disturbances of Lipid Metabolism and Fat Embolism
 4.2.2 Increase of Polyunsaturated Fatty Acids in Serum and Aorta
 4.2.3 Antiatherogenic Effect of EPL
 4.2.4 Experiments on the Simulated Transport Function HDL
 4.2.5 Fat Embolism
4.3 Effect in Mucosa Damages (by NSAIDs)
 4.3.1 Protection against Ulcerogenesis
 4.3.2 Anti-Inflammatory and Anti-Arthritic Effects
4.4 Cerebral Effects

5. CLINICAL STUDIES WITH “ESSENTIAL” PHOSPHOLIPIDS IN DIFFERENT DISEASES

5.1 Liver Diseases
 5.1.1 Toxic Liver Damage
 5.1.1.1 Alcoholic Fatty Liver
 5.1.1.2 Drug induced Hepatic Injury
 5.1.1.3 Toadstool Poisoning
 5.1.1.4 Hepatic Injury Caused by Chemicals
 5.1.1.5 Diabetic Fatty Liver
 5.1.1.6 Fatty Liver Due to Malnutrition
 5.1.2 Acute Viral Hepatitis
5.1.3 Chronic Hepatitis
5.1.4 Cirrhosis of the Liver
5.1.5 Hepatic Coma
5.1.6 Effect on the Composition of Bile
5.1.7 Stimulation of Regeneration
5.1.8 Summary of Clinical Finding
5.2 **Kidney Disorders**
5.2.1 Glomerulonephritis
5.2.2 Renal Insufficiency
5.2.3 Electrolyte Metabolism
5.2.4 Chronic Ambulatory Peritoneal Dialysis (CAPD)
5.3 **Gestosis**
5.4 **Dyslipidemia and Atherosclerosis**
5.4.1 Effects on Serum Triglycerides
5.4.2 Effects on LDL Cholesterol Serum
5.4.3 Effects on HDL Cholesterol Serum
5.4.4 Effects on Serum Triglycerides
5.4.5 Influence on Lipid Peroxidation
5.4.6 Effects on Enzyme Activity
5.4.6.1 LCAT
5.4.6.2 Lipases
5.4.7 Influence of Platelets and Red Blood Cells
5.4.7.1 Investigation into the influence of EPL on Increased Platelet Aggregation
5.4.7.2 Investigation into the influence of EPL on Red Blood Cell Fluidity
5.4.8 Investigation on the Progression and Symptoms of Atherosclerosis
5.4.8.1 Measurement of the Size of Atheromas in Human Vessels
5.4.8.2 Effects of Impaired Coronary Circulation
5.4.8.3 Effects of Impaired Peripheral Circulation
5.4.9 The Use of EPL in Fat Embolism
5.5 **Gastrointestinal Inflammation**
5.5.1 Effect of EPL on the Pharmacokinetics of NSAIDs
5.5.2 Studies in Healthy Volunteers for Proof of Efficacy
5.5.3 Studies with EPL in Gastroduodenal Damage, Especially Due to NSAID Administration
5.6 **Neurological Diseases**
5.6.1 Cerebral Circulatory Disorders (Sclerosis)
5.6.2 Involuntary Dementias
5.6.3 Friedreich’s Ataxia
5.6.4 Mania
5.6.5 Multiple Sclerosis
5.6.6 Other Diseases
5.7 **Lung Diseases**
5.7.1 Animal Experiments
5.7.2 Clinical Studies
5.8 **Psoriasis**
5.9 Tolerance of EP
5.9.1 Oral Application of EPL
5.9.2 Oral Clinical Long-Term Application of EPL
5.9.3 Intravenous Application of EPL

6. DISCUSSION OF THE PHARMACOLGICAL AND CLINICAL RESULTS

6.1 EPL as a Membrane Therapeutic
6.2 Outlook on the Further Development of EPL
 6.2.1 The Dosage
 6.2.2 The Galenic Preparation
 6.2.3 Future Studies
 6.2.4 Changes of the Composition

7. SUMMARY

8. REFERENCES
PREFACE

Research on "essential" phospholipids (EPL) has already attained but not yet accomplished its history. In the year 1989 it was 50 years since Hans Eikermann extracted the highly purified fraction of phosphatidylcholine molecules from soya beans. During these 50 years dozens of symposia and scientific meetings took place, and hundreds of publications appeared. Although a large number of texts on EPL have been published so far (mainly in the form of proceedings of scientific conferences), an up-dated and systematic scientific presentation reflecting all the achievements of EPL has still been missing. Therefore, this book describing all the results obtained from both experimental and clinical studies on EPL should be greatly appreciated. Moreover, some prospects of studies showing issues to be solved (strictly scientific questions like immunolocial and receptor studies) and practical problems, such as new principles of dosage, new galenic forms or new indications, have also been pointed out. Another value of this book is the fact that some theoretical issues and practical indications have been consistently combined.

The title of the book as well as the titles of the chapters constitute a recapitulation of the existing knowledge on EPL, which with its special and main ingredient – dilinoleoyl-phosphatidylcholine - is of great importance in all diseases characterized by damaged membrane structures, reduced phospholipids contents and/or reduced membrane fluidity. The titles of the main chapters (phospholipids in the human membrane, the "essential" phospholipids, mode of action of EPL, pharmacological investigations, clinical studies) only give a general view, while careful reading presents a broad range of indications to the reader: liver and kidney diseases, dyslipidemia and atherosclerosis, gestosis, gastric and intestinal inflammation, neurologic disorders, lung and skin diseases.

For a clinical pharmacologist the results of pharmacokinetic investigations (absorption of the 14C-labelled substance after oral administration) are of special interest as well as the fact that 1,2-dilinoleoylphosphatidylcholine, which is physiologically present in the human body only in trace amounts, may substitute endogenous phospholipids and be incorporated into all membrane-containing fractions, thus improving the fluidity of membranes.

Summing up, the book is a broad source of modern knowledge on EPL and an interesting publication from both theoretical and practical points of view. It can also serve as an inspiration to start further studies on EPL.

Szczecin, 1993
Jerzy Wójcicki, M.D.
Professor of Clinical Pharmacology